Roll No._____

B Tech Examination May-2014 NUMERICAL METHODS & SIMULATION IN ENGINEERING Subject Code : AE–309 Paper ID:A0717

Time : 3 Hours

Note :Section A is compulsory. Attempt any four questions from Section-B and any Two Questions from Section-C

SECTION-A

- 1. (i) Which of these 0.30, 0.33 & 0.34 best approximates the number $\frac{1}{3}$.
 - (ii) State intermediate value property.
 - (iii) Give Gauss forward interpolation formula.
 - (iv) Show that $\nabla^2 y_8 = y_8 2y_7 + y_6$.
 - (v) Write Gauss integration formula when n = 2.
 - (vi) Find the inverse of the matrix $A = \begin{bmatrix} 5 & -2 & 4 \\ -2 & 1 & 1 \\ 4 & 1 & 0 \end{bmatrix}$
 - (vii) Obtain first approximation of $y^1 = x+y^2$ subject to y(0)=1, using Picards method.
 - (viii) Discuss advantages and limitations of system simulation.
 - (ix) Give 4 applications of monte carlo method, (Examples only).
 - (x) Differentiate between 'stochastic' and 'Random variables' and 'Discrete' and 'Continuous' variables.

SECTION-B

- 2. Using method of iteration, Find a real root of the equations $x=0.2x^2+0.8$ and $y=0.3xy^2+0.7$ (Take $x_0 = y_0 = \frac{1}{2}$)
- 3. Show that , $e^{x} \left[u_{0} + x \Delta u_{0} + \frac{x^{2}}{21} \Delta^{2} u_{0} + \cdots \right] = u_{0} + u_{1}x + u_{2}\frac{x^{2}}{21} + \cdots$ 4. Evaluate I = $\int_{0}^{1} \frac{1}{1+x} dx$, correct to three decimals, by simpson's $\frac{1}{3}$ rule.

(Take h= 0.5, 0.25 & 0.125).

www.a2zpapers.com

www.a2zpapers.com

Download free old Question papers gndu, ptu hp board, punjab board

Maximum Marks: 60

(2 marks each)

(5 marks each)

1

- 5. Solve the system of equations: 3x + y + 2z = 3; 2x - 3y - z = -3 & x + 2y + z = 4
- 6. Obtain value of π using monte carlo method.

SECTION-C

(10marks each)

7. (a) The population of a town is given as follows:

Year :x	1891	1901	1911	1921	1931
Population :y (in thousands)	46	66	81	93	101

Estimate the population for the year 1925.

(b) Obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.2 from the table:

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

8.

(a) Obtain the largest eigen value & the Corresponding eigen vector of the

	[1	6	1
matrix: A =	1	2	0
	_0	0	3

- (b) Find y(0.2)& y(0.4) using Runke kutta method, given that $y^1 = 1 + y^2$ and y(0) = 0.
- 9. (a) Write a note on validation & Calibration of simulation models.
 - (b) Discuss features of simulation language 'SIMULA'.

.....End.....